The Complexity of Maximum Matroid-Greedoid Intersection

نویسندگان

  • Taneli Mielikäinen
  • Esko Ukkonen
چکیده

The maximum intersection problem for a matroid and a greedoid, given by polynomial-time oracles, is shown NP -hard by expressing the satisfiability of boolean formulas in 3-conjunctive normal form as such an intersection. Also the corresponding approximation problem is shown NP -hard for certain approximation performance bounds. This is in contrast with the maximum matroid-matroid intersection which is solvable in polynomial time by an old result of Edmonds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Complexity of Maximum Matroid-Greedoid Intersection and Weighted Greedoid Maximization

The maximum intersection problem for a matroid and a greedoid, given by polynomial-time oracles, is shown NP -hard by expressing the satis ability of boolean formulas in 3-conjunctive normal form as such an intersection. The corresponding approximation problems are shown NP -hard for certain approximation performance bounds. Moreover, some natural parameterized variants of the problem are shown...

متن کامل

The complexity of the matroid-greedoid partition problem

We show that the maximum matroid-greedoid partition problem is NP-hard to approximate to within 1/2 + ε for any ε > 0, which matches the trivial factor 1/2 approximation algorithm. The main tool in our hardness of approximation result is an extractor code with polynomial rate, alphabet size and list size, together with an efficient algorithm for list-decoding. We show that the recent extractor ...

متن کامل

Parallel Complexity for Matroid Intersection and Matroid Parity Problems

Let two linear matroids have the same rank in matroid intersection. A maximum linear matroid intersection (maximum linear matroid parity set) is called a basic matroid intersection (basic matroid parity set), if its size is the rank of the matroid. We present that enumerating all basic matroid intersections (basic matroid parity sets) is in NC, provided that there are polynomial bounded basic m...

متن کامل

An intersection theorem for supermatroids

We generalize the matroid intersection theorem to distributive supermatroids, a structure that extends the matroid to the partially ordered ground set. Distributive supermatroids are special cases of both supermatroids and greedoids, and they generalize polymatroids. This is the first good characterization proved for the intersection problem of an independence system where the ground set is par...

متن کامل

A Fast Approximation for Maximum Weight Matroid Intersection

We present an approximation algorithm for the maximum weight matroid intersection problem in the independence oracle model. Given two matroids defined over a common ground set N of n elements, let k be the rank of the matroid intersection and let Q denote the cost of an independence query for either matroid. An exact algorithm for finding a maximum cardinality independent set (the unweighted ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001